Nanoscale. 2022 Aug 11;14(31):11429-11442. doi: 10.1039/d2nr02620a. PMID: 35904053
H.Song, H.Sun, N.He, et al.
Archives Publications
AGuIX nanoparticles enhance ionizing radiation-induced ferroptosis on tumor cells by targeting the NRF2-GPX4 signaling pathway
J Nanobiotechnology. 2022 Oct 14;20(1):449. doi: 10.1186/s12951-022-01654-9.PMID: 36242003 Free PMC article.
H.Sun, H.Cai, C.Xu, et al.
T1 Mapping From MPRAGE Acquisitions: Application to the Measurement of the Concentration of Nanoparticles in Tumors for Theranostic Use
J Magn Reson Imaging. 2022 Oct 31. doi: 10.1002/jmri.28509
A. Lavielle, F. Boux, J. Deborne, et al.
Identification of Molecular Fragments in Equilibrium with Polysiloxane Ultrasmall Nanoparticles
Nanomaterials, 2022, 12(5), 738.
P. Rocchi, L. Labied, T. Doussineau, et al.
A New Generation of Ultrasmall Nanoparticles Inducing Sensitization to Irradiation and Copper Depletion to Overcome Radioresistant and Invasive Cancers
Pharmaceutics, 2022, 14(4), 814.
P. Rocchi, D. Brichart-Vernos, F. Lux, et al.
Radiosensitization Effect of AGuIX, a Gadolinium-Based Nanoparticle, in Nonsmall Cell Lung Cancer
ACS Appl Mater Interfaces, 2020, 12, 51, 56874-56885.
Y. Du, H. Sun, F. Lux, et al.
Biodegradation of metal-based ultra-small nanoparticles: A combined approach using TDA-ICP-MS and CE-ICP-MS
Analytica Chimica Acta, 2021.
L. Labied, P. Rocchi, T. Doussineau, et al.
Quantitative tissue pharmacokinetics and EPR effect of AGuIX® nanoparticles: a multimodal imaging study in an orthotopic glioblastoma rat model and healthy macaque
Adv Healthc Mater., 2021, 1, e2100656.
V.-L. Tran, F. Lux, N. Tournier, et al.
Multimodal imaging Gd-nanoparticles functioalized with Pittsburgh compound B or a nanobody for amyloid plaques targeting
Nanomedicine, 2017, 12, 1675-1687.
J. Pansieri, M. Plissonneau, N. Stransky-Heilkron, et al.
Proton MR spectroscopy and diffusion MR imaging to predict tumor response to interstitial photodynamic therapy for glioblastoma
Theranostics, 2017, 7, 436-451.
M. Toussaint, S. Pinel, F. Auger, et al.
Ultrasmall AGuIX theranostic nanoparticles for vascular-targeted interstitial photodynamic therapy of glioblastoma
Int. J. Nanomedicine, 2017, 12, 7075-7088.
E. Thomas, L. Colombeau, M. Gries, et al.
Magnetic resonance lymphography at 9.4 T using a gadolinium-based nanoparticle in rat: investigations in healthy animals and a hindlimb lymphedema model
Invest. Radiol., 2017, 52, 725-733.
A. Müller, P. Fries, B. Jelvani, et al.
Gadolinium-based nanoparticles as sensitizing agents to carbon ions in head and neck tumor cells
Nanomedicine: NBM, 2017, 13, 2655-2660.
A. S. Wozny, M. T. Aloy, G. Alphonse, et al.
Magnetic nanoparticles applications for amyloidosis study and detection: a review
Nanomaterials, 2018, 8, 0740.
J. Pansieri, M. Gerstenmeyer, F. Lux, et al.
Ultrasmall theranostic gadolinium-based nanoparticles to improve high-grade rat glioma survival
Functionalization of theranostic AGuIX® nanoparticles for PET/MRI/optical imaging
RSC Advances, 2019, 9, 24811-24815.
V. Thakare, V.-L. Tran, M. Natuzzi, et al.
Antibody-targeting of ultra-small nanoparticles enhances imaging sensitivity and enables longitudinal tracking of multiple myeloma
Nanoscale, 2019, 11, 20485-20496.
A. Detappe, M. Reidy, Y. Yu, et al.
Evaluation of the theranostic properties of gadolinium-based nanoparticles for head and neck cancer
Head Neck, 2019, 41, 403-410.
R. Quatre, T. Jacquet, I. Atallah, et al.
Gd-nanoparticles functionnalization with specific peptides for β-amyloid plaques targeting
Nanobiotechnology, 2016, 14, 60.
M. Plissonneau, J. Pansieri, L. Heinrich-Balard, et al.
Chemical and in vitro characterizations of a promising bimodal AGuIX probe able to target apoptotic cells for applications in MRI and optical imaging
Contrast Media Mol. Imaging, 2016, 11, 381-395.
M. Dentamaro, F. Lux, L. Vander Elst, et al.
MR imaging, targeting and characterization of pulmonary fibrosis using intra-tracheal administration of gadolinium-based nanoparticles
Contrast Media Mol. Imaging, 2016, 11, 396-404.
N. Tassali, A. Bianchi, F. Lux, et al.
Key clinical beam parameters for nanoparticle-mediated radiation dose amplification
Scientific Report, 2016, 6, 34040.
A. Detappe, S. Kunjachan, P. Drané, et al.
Effect of gadolinium-based nanoparticles on nuclear DNA damage and repair in glioblastoma tumor cells
J. Nanobiotechnology, 2016, 14, 63.
L. Stefancikova, S. Lacombe, D. Salado, et al.
Improving proton therapy by metal-containing nanoparticles : nanoscale insights
Int. J. Nanomedicine, 2016, 11, 1549-1556.
T. Schlathölter, P. Eustache, E. Porcel, et al.
Pushing radiation therapy limitations with theranostic nanoparticles
Nanomedicine, 2016, 11, 997-999.
A. Detappe, F. Lux, O. Tillement.
Multifunctionnal ultrasmall nanoplatforms for vascular-targeted interstitial photodynamic therapy of brain tumors guided by real-time MRI
Nanomedicine: NBM, 2015, 11, 657-670.
D. Bechet, F. Auger, P. Couleaud, et al.
Ultrasmall nanoplatforms as calcium-responsive contrast agents for magnetic resonance imaging
Small, 2015, 11, 4900-4909.
A. Moussaron, S. Vibhute, A. Bianchi, et al.
Ultrasmall particles for Gd-MRI and 68Ga-PET dual imaging
Contrast Media Mol. Imaging, 2015, 10, 309-319.
C. Truillet, P. Bouziotis, C. Tsoukalas, et al.
Combining ultrasmall gadolinium-based nanoparticles with photon irradiation overcomes radioresistance of head and neck squamous cell carcinoma
Nanomedicine: NBM, 2015, 11, 247-257.
I. Miladi, M.-T. Aloy, E. Armandy, et al.
Nebulized gadolinium-based nanoparticles : a theranostic approach for lung tumor imaging and radiosensitization
Small, 2015, 11, 215-221.
S. Dufort, A. Bianchi, M. Henry, et al.
Orotracheal administration of contrast agents: a new protocol for brain tumor targeting
NMR Biomed., 2015, 28, 738-746.
A. Bianchi, D. Moncelet, F. Lux, et al.
Gadolinium nanoparticles and contrast agent as radiation sensitizers
Phys. Med. Biol., 2015, 60, 4449-4464.
F. Taupin, M. Flaender, R. Delorme, et al.
Evaluation of a gadolinium-based nanoparticle (AGuIX) for contrast enhanced MRI of the liver in a rat model of hepatic colorectal cancer metastases at 9.4 tesla
Rofo., 2015, 187, 1108-1115.
P. Fries, D. Morr, A. Müller, et al.
Gadolinium based-nanoparticles for theranostic MRI-Radiosensitization
Nanomedicine, 2015, 11, 1801-1815.
F. Lux, L. Sancey, A. Bianchi, et al.
Nanoparticules ultrafines en radiothérapie : le cas des AGuIX
Cancer Radiother., 2015, 19, 508-514.
F. Lux, A. Detappe, S. Dufort, et al.
3D Spatial Distribution of Nanoparticles in Mice Brain Metastases by X-ray Phase-Contrast Tomography
Frontiers in Oncology, 2021, 11, 55466.
E. Longo, L. Sancey, A. Cedola, et al.
Quantifying nanotherapeutic penetration using a hydrogel-based microsystem as a new 3D in vitro platform
Lab on a Chip, 2021, 21, 2495-2510.
S. Goodarzi, A. Prunet, F. Rossetti, et al.
Radiation dose enhancement of gadolinium-based AGuIX nanoparticles on HeLa cells
Nanomedicine, 2014, 10, 1751-1755.
M. Luchette H. Korideck, M. Makrigiorgos, et al.
Targeting and in vivo imaging of non-small-cell lung cancer using nebulized multimodal contrast agents
PNAS, 2014, 111, 9247-9252.
A. Bianchi, S. Dufort, F. Lux, et al.
Gadolinium-based nanoparticles to improve the hadrontherapy performances
Nanomedicine: NBM, 2014, 10, 1601-1608.
E. Porcel, O. Tillement, F. Lux, et al.
Advantages of gadolinium based ultrasmall nanoparticles vs molecular gadolinium chelates for radiotherapy guided by MRI for glioma treatment
Cancer Nanotechnology, 2014, 5, 4.
G. Le Duc, S. Roux, A. Paruta-Tuarez, et al.
Cell localisation of gadolinium-based nanoparticles and related radiosensitizing efficacy in glioblastoma cells
Cancer Nanotechnology, 2014, 5, 6.
L. Stefancikova, E. Porcel, P. Eustache, et al.
Quantitative biodistribution and pharmacokinetics of multimodal gadolinium-based nanoparticles for lungs using ultrashort TE MRI
Magn. Reson. Mater. Phy., 2014, 27, 303-316.
A. Bianchi, S. Dufort, F. Lux, et al.
Laser-induced breakdown spectroscopy: a new approach for nanoparticle’s mapping and quantification in organ tissue
J. Vis. Exp., 2014, 88, e51353
L. Sancey, V. Motto-Ros, S. Kotb, et al.
Laser spectrometry for multi-elemental imaging of biological tissues
Sci. Rep., 2014, 4, 6065.
L. Sancey, V. Motto-Ros, B. Busser, et al.
The issues and tentative solutions for contrast-enhanced magnetic resonance imaging at ultra-high field strength
WIREs Nanomed Nanobiotechnol, 2014, 6, 559-573.
P. Fries, J. N. Morelli, F. Lux, et al.
Small rigid platforms functionalization with quaternary ammonium : targeting extracellular matrix of chondrosarcoma
Nanomedicine :NBM, 2014, 10, 1887-1895.
E. Miot-Noirault, A. Vidal, J. Morlieras, et al.
Long distance energy transfer photosensitizers arising in hybrid nanoparticles leading to fluorescence emission and singlet oxygen luminescence quenching
Photochem. Photobiol. Sci., 2012, 11, 803-811.
A. Sève, P. Couleaud, F. Lux, et al.
Multifunctionnal Peptide-Conjugated Hybrid Silica Nanoparticles for Photodynamic Therapy and MRI
Theranostics, 2012, 2, 889.
H. Benachour, A. Sève, T. Bastogne, et al.
Real-time monitoring of phototoxicity in nanoparticles-based photodynamic therapy : a model-based approach
PLoS ONE, 2012, 7, e48617.
H. Benachour, T. Bastogne, M. Toussaint, et al.
Biodistribution of ultrasmall gadolinium-based nanoparticles as theranostic agent: Application to brain tumors
J. Biomater. Appl., 2013, 28, 385-394.
I. Miladi, G. Le Duc, D. Kryza, et al.
Internalization pathways into cancer cells of gadolinium-based radiosensitizing nanoparticles
Biomaterials, 2013, 34, 181-195.
W. Rima, L. Sancey, M.-T. Aloy, et al.
Coupling of HPLC with electrospray ionization mass spectrometry for studying the aging of ultrasmall multifunctional gadolinium-based nanoparticles
Anal. Chem., 2013, 85, 10440-10447.
C. Truillet, F. Lux, O. Tillement, et al.
Contrast enhanced lung MRI in mice using ultra-short echo time radial imaging and intratracheally administrated Gd-based contrast agent
Magn. Reson. Med., 2013, 70, 1419-1426.
Bianchi, F. Lux, O. Tillement, Y. Crémillieux
Functionnalization of small rigid platforms with cyclic RGD peptides for targeting tumors overexpressing αvβ3 integrins
Bioconjugate Chem., 2013, 24, 1584-1597.
J. Morlieras, S. Dufort, L. Sancey, et al.
Development of gadolinium based nanoparticles having an affinity towards melanin
Nanoscale, 2013, 5, 1603-1615.
J. Morlieras, J.-M. Chezal, E. Miot-Noirault, et al.
In vivo evidence of the targeting of cartilaginous tissue by pyridinium functionalized nanoparticles
Chem. Comm., 2013, 49, 3046-3048.
J. Morlieras, J.–M. Chezal, E. Miot-Noirault, et al.
High Resolution Cellular IRM: Gadolinium and Iron Oxides Nanoparticles for in Depth Dual Cell Imaging of Engineered Tissue Constructs
ACS Nano, 2013, 7, 7500-7512.
R. Di Corato, F. Gazeau, C. Le Visage, et al.
Bifunctionnal polypyridyl-Ru(II) complex grafted onto gadolinium-based nanoparticles for MR-Imaging and Photodynamic therapy
Dalton Trans., 2013, 42, 12410-12420.
C. Truillet, F. Lux, J. Moreau, et al.
Mapping of native inorganic elements and injected nanoparticles in a biological organ with laser-induced plasma
Appl. Phys. Lett., 2012, 101, 223702.
V. Motto-Ros, L. Sancey, Q. L. Ma, et al.
Towards an image-guided microbeam radiation therapy using gadolinium-based nanoparticles
ACS Nano, 2011, 5, 9566-9574.
G. Le Duc, I. Miladi, C. Alric, et al.
In vitro radiosensitizing effects of ultrasmall gadolinium based particles on tumour cells
J. Nanosci. Nanotechnol., 2011, 11, 7833-7839.
P. Mowat, A. Mignot, W. Rima, et al.
Three-dimensionnal quantitative MRI of aerosolized gadolinium-based nanoparticles and contrast agents in isolated ventilated porcine lungs
Magn. Reson. Med., 2020, 83, 1774-172.
Y. Crémillieux, Y. Montigaud, C. Bal, et al.
Human serum albumin in the presence of AGuIX nanoagents: structure stabilization without direct interaction
Int. J. Mol. Sci., 2020, 21, 4673.
X. Yang, M. Bolsa-Ferruz, L. Marichal, et al.
Nebulised gadolinium-based nanoparticles for a multimodal approach : quantitative and qualitative lung distribution using magnetic resonance and scintigraphy imaging in solated ventilated porcine lungs
Int. J. Nanomedicine, 2020, 15, 7251-7262.
Y. Montigaud, J. Pourchez, L. Leclerc, et al.
Theranostic AGuIX nanoparticles as radiosensitizer: A phase I, dose-escalation study in patients with multiple brain metastases (NANO-RAD trial)
Radiother Oncol., 2021, 160, 159-165.
C. Verry, S. Dufort, J. Villa, et al.
Rapid evaluation of novel therapeutic strategies using a 3D collagen-based tissue-like model
Front. Bioeng. Biotechnol., 2021, 9, 53.
P. Maury, E. Porcel, A. Mau, et al.
Taylor dispersion analysis coupled to inductively coupled plasma mass spectrometry for ultrasmall nanoparticle size measurement : from drug product to biological media studies
Anal. Chem., 2021, 93, 1254-1259.
L. Labied, P. Rocchi, T. Doussineau, et al.
Unique features of brain metastases – targeted AGuIX nanoparticles vs their constituents: a focus on glutamate-.GABA-ergic neurotransmission in cortex nerve terminals
Food Chem Toxicol., 2021, 149, 112004.
T. Borisova, N. Pozdnyakova, N. Krisanova, et al.
PET-MRI nanoparticles imaging of blood-brain barrier damage and modulation after stroke reperfusion
Brain Communications, 2020, 2, fcaa193.
J. Debatisse, O. Fakur Eker, O. Wateau, et al.
Anti-MUC1- C Antibody – conjugated nanoparticles potentiate the efficacy of fractionated radiation therapy
Int. J. Radiat. Oncol. Biol. Phys., 2020, 20, 6223.
A. Detappe, C. Mathieu, C. Jin, et al.
Targeting brain metastases with ultrasmall theranostic nanoparticles, a first-in-human trial from an MRI perspective
Science Advances, 2020, 6, eaay5279.
C. Verry, S. Dufort, B. Lemasson, et al.
EPR-mediated tumor targeting using ultrasmall-hybrid nanoparticles: from animal to human with theranostic AGuIX® nanoparticles
Theranostics, 2020, 10, 1319-1331.
G. Bort, F. Lux, S. Dufort, et al.
Treatment of multiple brain metastases using gadolinium nanoparticles and radiotherapy: NANO-RAD, a phase I study protocol
BMJ Open, 2019, 9, e023591.
C. Verry, L. Sancey, S. Dufort, et al.
One-pot direct synthesis for multifunctional hybrid silica nanoparticles
J. Mat. Chem. B, 2018, 6, 4821-4834.
V. –L. Tran, V. Thakare, F. Rossetti, et al.
AGuIX® from bench to bedside – Transfer of an ultrasmall theranostic gadolinium-based nanoparticle to clinical medicine
Br. J. Radiology, 2018, 91, 20180365.
F. Lux, V.-L. Tran, E. Thomas, et al.
Ultrasmall silica-based bismuth gadolinium nanoparticle for dual MR-CT guided radiation therapy
Nano Lett., 2017, 17, 1733-1740.
A. Detappe, E. Thomas, M. W. Tibbit, et al.
Synthesis and characterization of 89Zr-labeled ultrasmall nanoparticles
Mol. Pharm., 2016, 13, 2596-2601.
C. Truillet, E. Thomas, F. Lux, et al.
Safety evaluation and imaging properties of gadolinium based nanoparticles in nonhuman primates
Scientific Report, 2016, 6, 35053.
S. Kotb, J. Piraquive, F. Lamberton, et al.
Advanced multimodal nanoparticles delay tumor progression with clinical radiation therapy
J. Control. Release, 2016, 238, 103-113.
A. Detappe, S. Kunjachan, L. Sancey, et al.
Gadolinium-based nanoparticles and radiation therapy for multiple brain melanoma metastases : Proof of concept before phase I trial
Theranostics, 2016, 6, 418-427.
S. Kotb, A. Detappe, F. Lux, et al.
The high radiosensitizing efficiency of a trace of gadolinium-based nanoparticles in the tumor
Sci. Rep., 2016, 6, 29678.
S. Dufort, G. Le Duc, M. Salomé, et al.
MRI-guided clinical 6-MV radiosensitization of glioma using a unique gadolinium-based nanoparticles injection
Nanomedicine, 2016, 11, 2405-2417.
C. Verry, S. Dufort, E. L. Barbier, et al.
Long-Term in vivo clearance of Gadolinium-Based AGuIX (Activation and Guiding of Irradiation by X-Ray) Nanoparticles and their Biocompatibility after Systemic Injection
ACS Nano, 2015, 9, 2477-2488.
L. Sancey, S. Kotb, C. Truillet, et al.
The use of theranostic gadolinium-based nanoprobes to improve radiotherapy efficacy
Br. J. Radiology, 2014, 87, 20140134.
L. Sancey, F. Lux, S. Kotb, et al.
A top-down synthesis route to ultrasmall multifunctionnal Gd-based nanoparticles for theranostic applications
Chem. Eur. J., 2013, 19, 6122-6136.
A. Mignot, C. Truillet, F. Lux, et al.
Ultrasmall Rigid Platforms as multimodal probes for medical applications
Angew. Chem. Int. Ed., 2011, 51, 12299-13303.
F. Lux, A. Mignot, P. Mowat, et al.